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1 Introduction

In this article, which is an accompanying article to [2], we will concentrate on the clarification,
changes and additions made to the language Modula-2 during the standardization process.

Obviously, changes and new features interact with what is already in the language. We have
sacrificed on rationale to present more data on the clarifications and additions.

We will describe the most important changes and clarifications in section 2. Section 3 will
describe the extensions made to the language. In appendix A we will give the text of module SYSTEM
of the new standard.! Unfortunately, it is impossible to present all the definition modules in this
article. The reader is referred to the standard itself, to the FAQ or to compiler documentation.

2 Clarifications to the language

As has been stated in the accompanying article, the original definitions of the language Modula-2
contained several areas of uncertainty or ambiguity that needed clarification. Please note that this
does not necessarily mean that things were changed, it just means they were given a well-defined
meaning.

There is insufficient room here to mention all the clarifications to the language and system
modules, but we would like to draw the reader’s attention to an earlier article by Mark Woodman
[3] which comprehensively lists these clarifications as well as the numerous changes. Unfortunately,
that article does not give many examples and is based upon an earlier version of the Standard.
Therefore, some of the more important issues in the standard have been dealt with more extensively
below.

2.1 Single pass/Multi pass

The language defined in PIM allows mutually importing local modules, thereby requiring compilers
to make at least two scans of the source text to resolve use-before-declaration situations. Some
compilers depart from the definition in PIM by enforcing declare-before-use (with the exception

'The anthors would like to thank TSO for its permission to use parts of the standard in this paper.



of pointers, of course). This simplifies compilers by only requiring a single pass over the source
text, but the simplification comes at a cost: the addition of the keyword FORWARD to resolve mutual
recursion in procedures.

Both approaches have been reconciled in the Standard by allowing both kinds of compilers. Single
pass compilers may reject programs that are ‘too complex’ with respect to multi-pass dependencies,
but are required to produce an appropriate error message. Both kinds of compilers are required to
process the keyword FORWARD correctly.

2.2 Type transfers

Traditionally, two ways of converting values from one type to another (similar) type existed: an
unsafe way in which a bit pattern is copied unchanged, and a safe way in which the value is converted
to the new type, retaining the semantics. In PIM and in several implementations these two kinds
have not always been clearly separated.

In the Standard, a machine dependent and therefore unsafe conversion can be done by using the
new function procedure CAST which has to be imported from SYSTEM.

The new standard function VAL allows all safe conversions. Additionally, the functions FLOAT,
INT, LFLOAT, TRUNC, ORD and CHR are equivalent with VAL, when it is applied to the correct kinds
of parameters.

The table below gives an overview of legal combinations. Please note that space restrictions do
not allow us to discuss several subtleties regarding subranges, truncation and exceptions.

In the following table, i denotes a valid combination of types, and x denotes an invalid combination; T is
some enumeration type.

the type of the type denoted by the type parameter

the expression | CARDINAL* INTEGER* REAL LONGREAL CHAR* BOOLEAN*  the type T*
CARDINAL \/ \/ \/ \/ \/ \/ \/
INTEGER v v o v v v v
7 type v YAV A Y,
REAL Vv Vv Vv Vv X X X
LONGREAL \/ \/ \/ \/ X X X
R-type v v v v X X X
CHAR} i i X X i X X
BOOLEAN Vv Vv X X X Vv X
the type T Vv Vv X X X X Vv

* or a subrange of this type

1 or string literal type of length 0 or 1

Some examples:

FROM SYSTEM IMPORT CAST;
VAR

i : INTEGER;

c : CARDINAL;

BEGIN
i :=5;
c := CAST(CARDINAL, i); (* unsafe *)



c := VAL (CARDINAL, i); (x safe *)
i := VAL (INTEGER, 3.141592); (x SAFE, truncates *)
i := VAL (INTEGER, "C"); (*x SAFE, as ORD x*)

(% ... *)

2.3 Type compatibility

Modula-2 is known to be a strongly typed language. PIM is, however, not always clear on type
compatibility. The Standard distinguishes between, and gives precise rules for three forms of com-
patibility: expression compatibility, assignment compatibility and parameter compatibility. The
latter form has variants for value parameters and variable parameters. Where a formal parameter
is of a type exported from SYSTEM the rules for parameter compatibility are weakened.

2.4 Opaque types

In some implementations where the types CARDINAL and pointer types had the same storage require-
ments, opaque types could be declared as scalar types. The second edition of PIM allowed this, the
third edition of PIM only allowed opaque types being declared as pointer types.

The Standard agrees with the latter position, but also allows an opaque type to be defined as
another opaque type.

2.5 Characters, Strings and LENGTH

In most implementations the type CHAR is implemented using the ASCII character set. The Standard
has been purposely formulated to allow other character sets to be used (e.g. EBCDIC, ISO/TEC
10646 [1]).

In the fourth edition of PIM the use of a string terminating character is compulsory. This change
from earlier versions of PIM has not been adopted in the Standard. In the Standard there is also
no requirement that the string terminating character is equal to 0C as in PIM.

The Standard has extended the operations available on strings in two ways:

e a predefined function procedure LENGTH has been provided,

e A facility for string concatenations of string literals is provided:
CONST M2 = '"Modula'" + 55C +"2 is a Standard now";

Please note that 55C is of type string; concatenation is not defined for the type CHAR and not
available for string variables.

2.6 CASE statement and ELSE clause

The CASE statement has now been defined more precisely. Tt is now required that each of the values
contained in the case label lists be distinct. The same holds for variant field lists.

In PIM, an optional ELSE clause has been introduced. However, this was done without specifying
precisely what will happen when the value of the case selector is not contained in any of the case
label lists, and the ELSE clause is missing.

The Standard requires that in such a case an exception will be raised (see section 3.7 of this

paper).



3 Extensions to the language

This section will describe some of the additions to PIM. Again, we realize that we cannot be complete
and regret not to have included much rationale.

3.1 Modules and libraries

The varied language extensions necessitated a change in the structure of the library modules. Instead
of one module SYSTEM and several library modules, the Standard now contains so-called system
modules, required library modules and standard library modules. These modules have been specified
by presenting a (pseudo-)definition module and a VDM-SI. definition.

The section on system modules now contains modules called SYSTEM, COROUTINES, TER-
MINATION, EXCEPTIONS and M2EXCEPTIONS. The module SYSTEM is much like the one in
PTM, but has several extensions to facilitate machine-independent low-level programming. Coroutine
facilities have been moved from SYSTEM to the system module COROUTINES because it was felt
that the concept of coroutines was sufficiently important to be treated separately, as it is done with
exceptions and termination. It was also decided to switch back from PROCESS to COROUTINE as
the latter was found more correct. The other new system modules will be discussed in other sections
of this paper.

The following required library modules shall be provided by a conforming implementation: Stor-
age (containing NEW and DISPOSE), LowReal and LowlLong (allowing for dependable floating
point programming) and CharClass (providing extendable character sets).

The following groups of standard library modules may be provided by an implementation: Math-
ematical Libraries (modules RealMath and LongMath), Input-Output Library (22 modules, see sec-
tion 3.8), Concurrent Programming Library (modules Processes and Semaphores), Strings, String-
Conversions and SysClock. In particular the Mathematical Library, the Input-Output Library and
the String libraries were developed to counteract the large diversity in facilities offered by current
libraries. These standard library modules may be provided, meaning that there is no obligation to
provide them, but when they are provided they must have the same definition modules and the same
semantics as defined in the standard.

3.2 Types

The set of types available in the language has been extended by the numeric types LONGREAT,
COMPLEX and LONGCOMPLEX (with matching operators). It was decided not to provide the
types LONGINTEGER and LONGCARDINAT but to depend on the subrange mechanism instead.
Additionally, the types PACKEDSET, PROTECTION, COROUTINE and INTERRUPTSOURCE

have been provided, but will not be discussed here.

3.3 Return types of function procedures

It has always been an unsatisfactory restriction that return types of function procedures could not
be structured types. Many implementations do allow structured types to be returned, and so does
the Standard.



3.4 HIGH

Modula-2 as defined in PIM has so-called open array parameters. This feature allows e.g. writing
sort routines without knowing the bounds of the array to be sorted. The lower bound is mapped
to 0, the upper bound may be requested at run-time by a call of HIGH. According to PIM only
one-dimensional arrays can be used as parameter to HIGH.

The Standard has extended this facility to multi-dimensional arrays:

TYPE colour = (red, yellow, green);
VAR a : ARRAY [-7..-2] OF ARRAY BOOLEAN OF ARRAY colour OF REAL;

PROCEDURE p (f: ARRAY OF ARRAY OF ARRAY OF REAL);

For a call of HIGH from within the body of p that was activated by ‘p(a)’:

expression result
HIGH(f) 5
HIGH(f[0]) 1
HIGH(f[0,0]1) 2
HIGH(£f[0,0,0]) | error

As a matter of clarification: the use of HIGH on ordinary arrays is not allowed in the Standard.

3.5 Value constructors

One of the clarifications to the language states that the result type of a function procedure may
be an elementary type as well as a structured type. This allows for functions whose result value
can directly be assigned to record or array variables. Therefore it seemed only logical to remove
the restriction that had so far disallowed the declaration of structured constants and the dynamic
construction of values of structured data types.

This facilitates a more consistent style of programming where all the constants can really be
declared as such and values of structured types can be constructed in a relatively easy way, thereby
preventing the generation of initialization errors which are difficult to trace.

The new features supporting the construction of array values include a ‘replicator’ called BY, an
old keyword in another context. Replication of elements allows for particularly easy initialization of
array values:

TYPE
Matrix3D = ARRAY [1..3,1..3] OF REAL;
LargeVector = ARRAY [1..1234] OF REAL;
CONST
EmptyMatrix = Matrix3D {{0.0 BY 3} BY 3};
UnityMatrix = Matrix3D {{1.0, 0.0 BY 2},
{0.0, 1.0, 0.0},
{0.0 BY 2, 1.0}};
ConstVector = LargeVector {1.0, 2.0, 0.0 BY 1231, 3.0%};



VAR
myMatrix : Matrix3D;
cl,c2,c3 : REAL;

BEGIN
(% ... *)
MyMatrix := Matrix3D {{0.0 BY 3} BY 2, {ci1, 0.0, c3}};
(% ... *)

Please note that structured value constructors disallow the creation of anonymous types by
always requiring a type identifier, which precludes any ambiguities with regard to the component
types involved. Tt should also be noted that value constructors can be used to compose element
values contained in variables, not just constants.

Record values may be constructed by providing an enumeration of the record’s elements in the

order of declaration:

IMPORT SysClock;

TYPE
DocumentStatus = (NWI, CD, DIS, IS);
Date =
RECORD
year : CARDINAL;
month : SysClock.Month;
day : SysClock.Day;
END;
ISODocument =
RECORD
committee : ARRAY [1..48] OF CHAR;
number : CARDINAL;
part : CARDINAL;
title : ARRAY [1..64] OF CHAR;
status : DocumentStatus;
date : Date;
END;
VAR
d : Date;

bfd : ISODocument;

BEGIN
(k... %)
d := Date {1996, 6, 13};
bfd := ISODocument {"ISO/IEC JTC1/SC22/WG13", 10514, 1,
"Modula-2", IS, d};
(¥ or let’s do it the nested way: *)
bfd := ISODocument {"ISO/IEC JTC1/SC22/WG13", 10514, 1,



"Modula-2", IS, Date {1996, 6, 1}};
(% ... *)

3.6 TFinalization

The original definition of Modula-2 did not provide for a way to execute code after a program
or library module has been used. However, this was soon found necessary and there were several
different, implementations around. During standardization, it was decided that there should be a
consistent way of handling module termination, or finalization, as it was ultimately called.

It turned out to be difficult to find a way to dynamically register finalization code without
running into problems, e.g. with exception handling (see below). Therefore it was decided to use a
language extension and thereby provide static registration of finalization code. A module block body
may now contain an initialization part (introduced by BEGIN as usual) as well as a finalization part
(introduced by the new keyword FINALLY) which will be executed on module finalization:

MODULE Client;

(x ... %)
BEGIN
ConnectToServer;
(x ... %)
FINALLY
DisconnectFromServer;
END Client.

In this example, the finalization part is being used to make sure that the connection to a server
does not remain open when the program terminates, even if the termination is due to an error.

The standard extends this concept to procedure body finalization. Procedure bodies can therefore
also contain a static finalization part which will be executed on finalization of the procedure. Tt is
worth noting that in contrast to the finalization of static modules, procedures and dynamic modules
may be finalized more than once (as they may also be called, or initialized, more than once).

3.7 Exceptions

Given that Modula-2 had always been considered a Systems Programming lLanguage, there was
considerable pressure from users to provide a standardized way of handling exceptions. It was
decided to provide that functionality using a combination of language extension and system modules,
in order to keep the change to the language itself as small as possible.

The new keyword EXCEPT introduces an optional part of a module or procedure body that
may contain code to handle exceptions. The programmer may provide code that tries to eliminate
the reason of an exception and then executes the initialization part of the block body again (using
the new statement RETRY).

Using the procedure EXCEPTIONS.RAISE, which takes an exception source, an exception
number and a message string as parameters, any module may raise its own exceptions (see the longer
example below). Because of this way of optionally handling exceptions, the standard provides both
‘termination’ and ‘retry’ semantics.

As exceptions may occur in the initialization as well as the finalization part of a module or pro-
cedure body, both sections may contain individual EXCEPT parts to handle exceptions differently.
There is a mechanism that allows the handling of exceptions outside the block body they occur in,



if it does not provide an exceptional execution part itself. For instance, one could write a ‘wrapper’
procedure that calls another procedure which will cause an exception for certain parameter values,
but does not provide an exception handler. Tn the case of an exception, the exceptional execution
part of the ‘wrapper’ procedure will be called and may identify and handle the exception.

A procedure body using all the facilities provided may look like this:

PROCEDURE Exceptional;
BEGIN

(* initialization code *)
EXCEPT

(* exception handler for initialization *)
FINALLY

(* finalization code *)
EXCEPT

(* exception handler for finalization *)
END Exceptional;

The system module M2EXCEPTION provides facilities for identifying language exceptions that
have been raised (e.g. a range overflow). Another system module EXCEPTIONS allows for the
identification of user-defined exceptions, the reporting of their occurrence, and for making inquiries
concerning the current state of execution. In this context, coroutines have to be considered very
carefully. However, that is beyond the scope of this paper.

For a slightly more substantial example, let us declare a module that is a possible source of
user-defined exceptions:

DEFINITION MODULE SC22;
TYPE SC22Exceptions = (rejected, cancelled);
(* Enumeration of the exceptions this module may raise. *)

PROCEDURE IsSC22Exception (): BOOLEAN;
PROCEDURE SC22Exception (): SC22Exceptions;
END SC22.

The implementation contains a private variable source which is assigned a unique value in the
module’s initialization body. This value can then be used to globally identify the module as a source
of exceptions. Note that this value is assigned dynamically, which allows for independent sources of
exceptions.

IMPLEMENTATION MODULE SC22;
IMPORT EXCEPTIONS;

VAR source : EXCEPTIONS.ExceptionSource;

PROCEDURE IsSc22Exception (): BOOLEAN;
BEGIN

RETURN EXCEPTIONS.IsCurrentSource (source);
END IsSC22Exception;



PROCEDURE SC22Exception (): SC22Exceptions;
BEGIN

RETURN VAL (SC22Exceptions, EXCEPTIONS.CurrentNumber (source));
END SC22Exception;

(% ... *)
EXCEPTIONS.RAISE (source, ORD (rejected), "Document rejected");
(% ... *)

BEGIN
EXCEPTIONS.AllocateSource (source);
END SC22.

exceptions, e.g.:

PROCEDURE Standardize;
BEGIN
StartProject;
Work;
SubmitDocument
EXCEPT
IF SC22.IsSC22Exception () THEN
CASE SC22.SC22Exception () OF
SC22.rejected
ChangeDocument ;
RETRY; (* start initialization part again *)
| SC22.cancelled :
GiveUp;
RETURN; (* leave the procedure *)
ELSE
(x ... %)
END;
(x ... %)
END
FINALLY
PublishDocument
EXCEPT
(x ... %)
END Standardize;

3.8 1/0 Library

In the original reports on Modula-2, some input/output modules had always been assumed to be
present, although their ‘definition” never got elaborated. Not only did implementors have to guess
about various semantic details; the library severely lacked functionality. Tt was soon decided that a
standardized set of library modules for input/output purposes should be devised.



The structure and level of functionality of this library more than once gave rise to heated debates,
in particular because the ‘perceived subjective complexity’ was considered much too high at times.
However, it was eventually agreed that the desired level of functionality, flexibility and extensibility
required the substantial number of 22 modules to be included in the standard. Tt should however
be noted that the entire 1/O Library is optional (see 3.1). The following figure shows the module
structure of the 1/O library (except for ‘simple’” operations, see below).

TOResult StdChans
ProgramArgs
Read results WholelO Standard and
default channels Channel for
Whole numbers

| rogram args
T.onglO] as text prog g

ReallO Obtaining and opening channels
T.ONGREAT,)
REAT mimbers | as text StreamFile RndFile
Text1O RawlO Sequential SeqFile Random access
streams files
Charac.ters Any value Rewindabld TermFile
and strings as storage locs sequential files
Channels to a
terminal
Input/Output. on given channels Device dependent operations
T10OChan 10T.ink
DNevice-independent interface to channels Tank between channels and new devices
10Consts ChanConsts
Constants for Constants for
10 modules device modules

The library allows for reading and writing of data streams over one or more channels. Channels
may be connected to sources of input data or to destinations of output data, known as devices or
device instances. As can be seen from the figure, there is a separation between modules that form
the common base of the library (I0Consts, ChanConsts, IOChan, 10Link), modules concerned with
device-dependent operations (StreamFile, SeqFile, RndFile, TermFile) or providing access to stan-
dard channels (StdChans, ProgramArgs), modules concerned with device-independent operations
(RawlO, TextT1O, WholelO, LonglO, ReallO, IOResult), and modules providing ‘simple’ 1/0, i.e.
all the operations provided by the device-independent modules, applied to standard channels which
do not need to be named explicitly (SRawlO, STextIO, SWholelO, SLonglO, SReallO, STOResult).

The modules TextlO, WholelO, LonglO and ReallOQ provide facilities for reading and writing
high-level units of data, using text operations on channels that have to be specified explicitly. This
includes characters, strings, as well as whole and real numbers in decimal notation. The module
RawlO allows for the reading and writing of arbitrary data types, using raw (binary) operations.
The module TOResult provides a facility to determine whether the last operation on a particular
channel was successful, or which error it generated.

The modules SRawlQ, STextIO, SWholelO, SLonglO, SReall() and SIOResult provide the same

functionality, except that they do not take parameters identifying a channel. Tnstead, they operate on



the default input and output channels, as identified by the module StdChans. A practical example
is shown in the section on specifying minimal requirements clauses in the accompanying paper.

StdChans provides access to standard and default channels. Standard channels do not have to
be opened or closed, and the values used to identify them remain constant throughout the execution
of the program. The identification values of default channels initially correspond to those of the
standard channels, but may be changed to reflect the effect of input/output redirection.

The standard device modules provided allow channels to be opened to named streams (Stream-
File), to rewindable sequential files (SeqFile), to random access files (RndFile) and to terminal
devices (TermFile). The module TOChan provides primitive device-independent operations on chan-
nels. Furthermore, it defines values for general exceptions that may be raised when using any device
through a channel. Additional exceptions related to device-specific operations may be provided by
the appropriate device modules.

The module 10OLink allows the user to provide additional specialized device modules for use with
channels, corresponding to the pattern of the rest of the library.

A Module SYSTEM
DEFINITION MODULE SYSTEM;
(* Gives access to system programming facilities that are probably non portable. *)

(* The constants and types define underlying properties of storage *)

CONST
BITSPERLOC = <implementation-defined constant> ;
LOCSPERWORD = <implementation-defined constant> ;
TYPE

LOC; (* A system basic type. Values are the uninterpreted contents of the smallest
addressable unit of storage *)

ADDRESS = POINTER TO LOC;

WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;

(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)
CONST
LOCSPERBYTE = <implementation-defined constant> ;

TYPE
BYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;

PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr + offset), or may raise an exception if this
address is not valid.

*)

PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;
(* Returns address given by (addr - offset), or may raise an exception if this address
is not wvalid.

*)



PROCEDURE DIFADR (addril, addr2: ADDRESS): INTEGER;
(* Returns the difference between addresses (addrl - addr2), or may raise an exception
if the arguments are invalid or if the address space is non-contiguous.

*)

PROCEDURE MAKEADR (val: <some type>; ... ): ADDRESS;
(* Returns an address constructed from a list of values whose types are
implementation—-defined, or may raise an exception if this address is not valid.

*)

PROCEDURE ADR (VAR v: <anytype>): ADDRESS;
(* Returns the address of variable v. *)

PROCEDURE ROTATE (val: <a packedset type>; num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by rotating up or down (left or right) by
the absolute value of num. The direction is down if the sign of num is negative,
otherwise the direction is up.

*)

PROCEDURE SHIFT (val: <a packedset type>; num: INTEGER): <type of first parameter>;
(* Returns a bit sequence obtained from val by shifting up or down (left or right) by
the absolute value of num, introducing zeros as necessary. The direction is down
if the sign of num is negative, otherwise the direction is up.

*)

PROCEDURE CAST (<targettype>; val: <anytype>): <targettype>;
(* CAST is a type transfer function. Given the expression denoted by val, it returns
a value of the type <targettype>. An invalid value for the target value or a
physical address alignment problem may raise an exception.

*)
PROCEDURE TSIZE (<type>; ... ): CARDINAL;
(* Returns the number of LOCS used to store a value of the specified <type>. The
extra parameters, if present, are used to distinguish variants in a variant record.
*)
END SYSTEM.
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