
ISO/IEC 10514-1, the standard for Modula-2:Changes, Clari�cations and AdditionsM. Sch�onhackerVienna University of TechnologyAustriaschoenhacker@eiunix.tuwien.ac.at C. PronkDelft University of TechnologyThe Netherlandsc.pronk@twi.tudelft.nlJune 27, 19961 IntroductionIn this article, which is an accompanying article to [2], we will concentrate on the clari�cation,changes and additions made to the language Modula-2 during the standardization process.Obviously, changes and new features interact with what is already in the language. We havesacri�ced on rationale to present more data on the clari�cations and additions.We will describe the most important changes and clari�cations in section 2. Section 3 willdescribe the extensions made to the language. In appendix A we will give the text of module SYSTEMof the new standard.1 Unfortunately, it is impossible to present all the de�nition modules in thisarticle. The reader is referred to the standard itself, to the FAQ or to compiler documentation.2 Clari�cations to the languageAs has been stated in the accompanying article, the original de�nitions of the language Modula-2contained several areas of uncertainty or ambiguity that needed clari�cation. Please note that thisdoes not necessarily mean that things were changed, it just means they were given a well-de�nedmeaning.There is insu�cient room here to mention all the clari�cations to the language and systemmodules, but we would like to draw the reader's attention to an earlier article by Mark Woodman[3] which comprehensively lists these clari�cations as well as the numerous changes. Unfortunately,that article does not give many examples and is based upon an earlier version of the Standard.Therefore, some of the more important issues in the standard have been dealt with more extensivelybelow.2.1 Single pass/Multi passThe language de�ned in PIM allows mutually importing local modules, thereby requiring compilersto make at least two scans of the source text to resolve use-before-declaration situations. Somecompilers depart from the de�nition in PIM by enforcing declare-before-use (with the exception1The authors would like to thank ISO for its permission to use parts of the standard in this paper.

of pointers, of course). This simpli�es compilers by only requiring a single pass over the sourcetext, but the simpli�cation comes at a cost: the addition of the keyword FORWARD to resolve mutualrecursion in procedures.Both approaches have been reconciled in the Standard by allowing both kinds of compilers. Singlepass compilers may reject programs that are `too complex' with respect to multi-pass dependencies,but are required to produce an appropriate error message. Both kinds of compilers are required toprocess the keyword FORWARD correctly.2.2 Type transfersTraditionally, two ways of converting values from one type to another (similar) type existed: anunsafe way in which a bit pattern is copied unchanged, and a safe way in which the value is convertedto the new type, retaining the semantics. In PIM and in several implementations these two kindshave not always been clearly separated.In the Standard, a machine dependent and therefore unsafe conversion can be done by using thenew function procedure CAST which has to be imported from SYSTEM.The new standard function VAL allows all safe conversions. Additionally, the functions FLOAT,INT, LFLOAT, TRUNC, ORD and CHR are equivalent with VAL when it is applied to the correct kindsof parameters.The table below gives an overview of legal combinations. Please note that space restrictions donot allow us to discuss several subtleties regarding subranges, truncation and exceptions.In the following table, p denotes a valid combination of types, and � denotes an invalid combination; T issome enumeration type.the type of the type denoted by the type parameterthe expression CARDINAL* INTEGER* REAL LONGREAL CHAR* BOOLEAN* the type T*CARDINAL p p p p p p pINTEGER p p p p p p pZ-type p p p p p p pREAL p p p p � � �LONGREAL p p p p � � �R-type p p p p � � �CHARy p p � � p � �BOOLEAN p p � � � p �the type T p p � � � � p* or a subrange of this typey or string literal type of length 0 or 1Some examples:FROM SYSTEM IMPORT CAST;VARi : INTEGER;c : CARDINAL;BEGINi := 5;c := CAST(CARDINAL, i); (* unsafe *)

c := VAL (CARDINAL, i); (* safe *)i := VAL (INTEGER, 3.141592); (* SAFE, truncates *)i := VAL (INTEGER, "C"); (* SAFE, as ORD *)(* ... *)2.3 Type compatibilityModula-2 is known to be a strongly typed language. PIM is, however, not always clear on typecompatibility. The Standard distinguishes between, and gives precise rules for three forms of com-patibility: expression compatibility, assignment compatibility and parameter compatibility. Thelatter form has variants for value parameters and variable parameters. Where a formal parameteris of a type exported from SYSTEM the rules for parameter compatibility are weakened.2.4 Opaque typesIn some implementations where the types CARDINAL and pointer types had the same storage require-ments, opaque types could be declared as scalar types. The second edition of PIM allowed this, thethird edition of PIM only allowed opaque types being declared as pointer types.The Standard agrees with the latter position, but also allows an opaque type to be de�ned asanother opaque type.2.5 Characters, Strings and LENGTHIn most implementations the type CHAR is implemented using the ASCII character set. The Standardhas been purposely formulated to allow other character sets to be used (e.g. EBCDIC, ISO/IEC10646 [1]).In the fourth edition of PIM the use of a string terminating character is compulsory. This changefrom earlier versions of PIM has not been adopted in the Standard. In the Standard there is alsono requirement that the string terminating character is equal to 0C as in PIM.The Standard has extended the operations available on strings in two ways:� a prede�ned function procedure LENGTH has been provided,� A facility for string concatenations of string literals is provided:CONST M2 = "Modula" + 55C +"2 is a Standard now";Please note that 55C is of type string; concatenation is not de�ned for the type CHAR and notavailable for string variables.2.6 CASE statement and ELSE clauseThe CASE statement has now been de�ned more precisely. It is now required that each of the valuescontained in the case label lists be distinct. The same holds for variant �eld lists.In PIM, an optional ELSE clause has been introduced. However, this was done without specifyingprecisely what will happen when the value of the case selector is not contained in any of the caselabel lists, and the ELSE clause is missing.The Standard requires that in such a case an exception will be raised (see section 3.7 of thispaper).

3 Extensions to the languageThis section will describe some of the additions to PIM. Again, we realize that we cannot be completeand regret not to have included much rationale.3.1 Modules and librariesThe varied language extensions necessitated a change in the structure of the library modules. Insteadof one module SYSTEM and several library modules, the Standard now contains so-called systemmodules, required library modules and standard library modules. These modules have been speci�edby presenting a (pseudo-)de�nition module and a VDM-SL de�nition.The section on system modules now contains modules called SYSTEM, COROUTINES, TER-MINATION, EXCEPTIONS and M2EXCEPTIONS. The module SYSTEM is much like the one inPIM, but has several extensions to facilitate machine-independent low-level programming. Coroutinefacilities have been moved from SYSTEM to the system module COROUTINES because it was feltthat the concept of coroutines was su�ciently important to be treated separately, as it is done withexceptions and termination. It was also decided to switch back from PROCESS to COROUTINE asthe latter was found more correct. The other new system modules will be discussed in other sectionsof this paper.The following required library modules shall be provided by a conforming implementation: Stor-age (containing NEW and DISPOSE), LowReal and LowLong (allowing for dependable oatingpoint programming) and CharClass (providing extendable character sets).The following groups of standard library modules may be provided by an implementation: Math-ematical Libraries (modules RealMath and LongMath), Input-Output Library (22 modules, see sec-tion 3.8), Concurrent Programming Library (modules Processes and Semaphores), Strings, String-Conversions and SysClock. In particular the Mathematical Library, the Input-Output Library andthe String libraries were developed to counteract the large diversity in facilities o�ered by currentlibraries. These standard library modules may be provided, meaning that there is no obligation toprovide them, but when they are provided they must have the same de�nition modules and the samesemantics as de�ned in the standard.3.2 TypesThe set of types available in the language has been extended by the numeric types LONGREAL,COMPLEX and LONGCOMPLEX (with matching operators). It was decided not to provide thetypes LONGINTEGER and LONGCARDINAL but to depend on the subrange mechanism instead.Additionally, the types PACKEDSET, PROTECTION, COROUTINE and INTERRUPTSOURCEhave been provided, but will not be discussed here.3.3 Return types of function proceduresIt has always been an unsatisfactory restriction that return types of function procedures could notbe structured types. Many implementations do allow structured types to be returned, and so doesthe Standard.

3.4 HIGHModula-2 as de�ned in PIM has so-called open array parameters. This feature allows e.g. writingsort routines without knowing the bounds of the array to be sorted. The lower bound is mappedto 0, the upper bound may be requested at run-time by a call of HIGH. According to PIM onlyone-dimensional arrays can be used as parameter to HIGH.The Standard has extended this facility to multi-dimensional arrays:TYPE colour = (red, yellow, green);VAR a : ARRAY [-7..-2] OF ARRAY BOOLEAN OF ARRAY colour OF REAL;PROCEDURE p (f: ARRAY OF ARRAY OF ARRAY OF REAL);For a call of HIGH from within the body of p that was activated by `p(a)':expression resultHIGH(f) 5HIGH(f[0]) 1HIGH(f[0,0]) 2HIGH(f[0,0,0]) errorAs a matter of clari�cation: the use of HIGH on ordinary arrays is not allowed in the Standard.3.5 Value constructorsOne of the clari�cations to the language states that the result type of a function procedure maybe an elementary type as well as a structured type. This allows for functions whose result valuecan directly be assigned to record or array variables. Therefore it seemed only logical to removethe restriction that had so far disallowed the declaration of structured constants and the dynamicconstruction of values of structured data types.This facilitates a more consistent style of programming where all the constants can really bedeclared as such and values of structured types can be constructed in a relatively easy way, therebypreventing the generation of initialization errors which are di�cult to trace.The new features supporting the construction of array values include a `replicator' called BY, anold keyword in another context. Replication of elements allows for particularly easy initialization ofarray values:TYPEMatrix3D = ARRAY [1..3,1..3] OF REAL;LargeVector = ARRAY [1..1234] OF REAL;CONSTEmptyMatrix = Matrix3D {{0.0 BY 3} BY 3};UnityMatrix = Matrix3D {{1.0, 0.0 BY 2},{0.0, 1.0, 0.0},{0.0 BY 2, 1.0}};ConstVector = LargeVector {1.0, 2.0, 0.0 BY 1231, 3.0};

VARmyMatrix : Matrix3D;c1,c2,c3 : REAL;BEGIN(* ... *)MyMatrix := Matrix3D {{0.0 BY 3} BY 2, {c1, 0.0, c3}};(* ... *)Please note that structured value constructors disallow the creation of anonymous types byalways requiring a type identi�er, which precludes any ambiguities with regard to the componenttypes involved. It should also be noted that value constructors can be used to compose elementvalues contained in variables, not just constants.Record values may be constructed by providing an enumeration of the record's elements in theorder of declaration:IMPORT SysClock;TYPEDocumentStatus = (NWI, CD, DIS, IS);Date =RECORDyear : CARDINAL;month : SysClock.Month;day : SysClock.Day;END;ISODocument =RECORDcommittee : ARRAY [1..48] OF CHAR;number : CARDINAL;part : CARDINAL;title : ARRAY [1..64] OF CHAR;status : DocumentStatus;date : Date;END;VARd : Date;bfd : ISODocument;BEGIN(* ... *)d := Date {1996, 6, 1};bfd := ISODocument {"ISO/IEC JTC1/SC22/WG13", 10514, 1,"Modula-2", IS, d};(* or let's do it the nested way: *)bfd := ISODocument {"ISO/IEC JTC1/SC22/WG13", 10514, 1,

"Modula-2", IS, Date {1996, 6, 1}};(* ... *)3.6 FinalizationThe original de�nition of Modula-2 did not provide for a way to execute code after a programor library module has been used. However, this was soon found necessary and there were severaldi�erent implementations around. During standardization, it was decided that there should be aconsistent way of handling module termination, or �nalization, as it was ultimately called.It turned out to be di�cult to �nd a way to dynamically register �nalization code withoutrunning into problems, e.g. with exception handling (see below). Therefore it was decided to use alanguage extension and thereby provide static registration of �nalization code. A module block bodymay now contain an initialization part (introduced by BEGIN as usual) as well as a �nalization part(introduced by the new keyword FINALLY) which will be executed on module �nalization:MODULE Client;(* ... *)BEGINConnectToServer;(* ... *)FINALLYDisconnectFromServer;END Client.In this example, the �nalization part is being used to make sure that the connection to a serverdoes not remain open when the program terminates, even if the termination is due to an error.The standard extends this concept to procedure body �nalization. Procedure bodies can thereforealso contain a static �nalization part which will be executed on �nalization of the procedure. It isworth noting that in contrast to the �nalization of static modules, procedures and dynamic modulesmay be �nalized more than once (as they may also be called, or initialized, more than once).3.7 ExceptionsGiven that Modula-2 had always been considered a Systems Programming Language, there wasconsiderable pressure from users to provide a standardized way of handling exceptions. It wasdecided to provide that functionality using a combination of language extension and system modules,in order to keep the change to the language itself as small as possible.The new keyword EXCEPT introduces an optional part of a module or procedure body thatmay contain code to handle exceptions. The programmer may provide code that tries to eliminatethe reason of an exception and then executes the initialization part of the block body again (usingthe new statement RETRY).Using the procedure EXCEPTIONS.RAISE, which takes an exception source, an exceptionnumber and a message string as parameters, any module may raise its own exceptions (see the longerexample below). Because of this way of optionally handling exceptions, the standard provides both`termination' and `retry' semantics.As exceptions may occur in the initialization as well as the �nalization part of a module or pro-cedure body, both sections may contain individual EXCEPT parts to handle exceptions di�erently.There is a mechanism that allows the handling of exceptions outside the block body they occur in,

if it does not provide an exceptional execution part itself. For instance, one could write a `wrapper'procedure that calls another procedure which will cause an exception for certain parameter values,but does not provide an exception handler. In the case of an exception, the exceptional executionpart of the `wrapper' procedure will be called and may identify and handle the exception.A procedure body using all the facilities provided may look like this:PROCEDURE Exceptional;BEGIN(* initialization code *)EXCEPT(* exception handler for initialization *)FINALLY(* finalization code *)EXCEPT(* exception handler for finalization *)END Exceptional;The system module M2EXCEPTION provides facilities for identifying language exceptions thathave been raised (e.g. a range overow). Another system module EXCEPTIONS allows for theidenti�cation of user-de�ned exceptions, the reporting of their occurrence, and for making inquiriesconcerning the current state of execution. In this context, coroutines have to be considered verycarefully. However, that is beyond the scope of this paper.For a slightly more substantial example, let us declare a module that is a possible source ofuser-de�ned exceptions:DEFINITION MODULE SC22;TYPE SC22Exceptions = (rejected, cancelled);(* Enumeration of the exceptions this module may raise. *)PROCEDURE IsSC22Exception (): BOOLEAN;PROCEDURE SC22Exception (): SC22Exceptions;END SC22.The implementation contains a private variable source which is assigned a unique value in themodule's initialization body. This value can then be used to globally identify the module as a sourceof exceptions. Note that this value is assigned dynamically, which allows for independent sources ofexceptions.IMPLEMENTATION MODULE SC22;IMPORT EXCEPTIONS;VAR source : EXCEPTIONS.ExceptionSource;PROCEDURE IsSc22Exception (): BOOLEAN;BEGINRETURN EXCEPTIONS.IsCurrentSource (source);END IsSC22Exception;

PROCEDURE SC22Exception (): SC22Exceptions;BEGINRETURN VAL (SC22Exceptions, EXCEPTIONS.CurrentNumber (source));END SC22Exception;(* ... *)EXCEPTIONS.RAISE (source, ORD (rejected), "Document rejected");(* ... *)BEGINEXCEPTIONS.AllocateSource (source);END SC22.This module could then be used as part of a program that needs to detect various sources ofexceptions, e.g.:PROCEDURE Standardize;BEGINStartProject;Work;SubmitDocumentEXCEPTIF SC22.IsSC22Exception () THENCASE SC22.SC22Exception () OFSC22.rejected :ChangeDocument;RETRY; (* start initialization part again *)| SC22.cancelled :GiveUp;RETURN; (* leave the procedure *)ELSE(* ... *)END;(* ... *)ENDFINALLYPublishDocumentEXCEPT(* ... *)END Standardize;3.8 I/O LibraryIn the original reports on Modula-2, some input/output modules had always been assumed to bepresent, although their `de�nition' never got elaborated. Not only did implementors have to guessabout various semantic details; the library severely lacked functionality. It was soon decided that astandardized set of library modules for input/output purposes should be devised.

The structure and level of functionality of this library more than once gave rise to heated debates,in particular because the `perceived subjective complexity' was considered much too high at times.However, it was eventually agreed that the desired level of functionality, exibility and extensibilityrequired the substantial number of 22 modules to be included in the standard. It should howeverbe noted that the entire I/O Library is optional (see 3.1). The following �gure shows the modulestructure of the I/O library (except for `simple' operations, see below).
Device dependent operationsLink between channels and new devicesIOLinkIOChanDevice-independent interface to channelsInput/Output on given channels TermFileChannels to aterminalRndFileRandom access�lesSeqFileRewindablesequential �les

ProgramArgsChannel forprogram argsdefault channelsStandard andStdChansstreamsSequentialStreamFileObtaining and opening channelsWholeIOWhole numbersas textand stringsCharactersTextIORealIOREAL numbersas text RawIOAny valueas storage locsRead resultsIOResult
IO modules ChanConstsConstants fordevice modulesIOConstsConstants for

LongIOLONGREALas text
The library allows for reading and writing of data streams over one or more channels. Channelsmay be connected to sources of input data or to destinations of output data, known as devices ordevice instances. As can be seen from the �gure, there is a separation between modules that formthe common base of the library (IOConsts, ChanConsts, IOChan, IOLink), modules concerned withdevice-dependent operations (StreamFile, SeqFile, RndFile, TermFile) or providing access to stan-dard channels (StdChans, ProgramArgs), modules concerned with device-independent operations(RawIO, TextIO, WholeIO, LongIO, RealIO, IOResult), and modules providing `simple' I/O, i.e.all the operations provided by the device-independent modules, applied to standard channels whichdo not need to be named explicitly (SRawIO, STextIO, SWholeIO, SLongIO, SRealIO, SIOResult).The modules TextIO, WholeIO, LongIO and RealIO provide facilities for reading and writinghigh-level units of data, using text operations on channels that have to be speci�ed explicitly. Thisincludes characters, strings, as well as whole and real numbers in decimal notation. The moduleRawIO allows for the reading and writing of arbitrary data types, using raw (binary) operations.The module IOResult provides a facility to determine whether the last operation on a particularchannel was successful, or which error it generated.The modules SRawIO, STextIO, SWholeIO, SLongIO, SRealIO and SIOResult provide the samefunctionality, except that they do not take parameters identifying a channel. Instead, they operate on

the default input and output channels, as identi�ed by the module StdChans. A practical exampleis shown in the section on specifying minimal requirements clauses in the accompanying paper.StdChans provides access to standard and default channels. Standard channels do not have tobe opened or closed, and the values used to identify them remain constant throughout the executionof the program. The identi�cation values of default channels initially correspond to those of thestandard channels, but may be changed to reect the e�ect of input/output redirection.The standard device modules provided allow channels to be opened to named streams (Stream-File), to rewindable sequential �les (SeqFile), to random access �les (RndFile) and to terminaldevices (TermFile). The module IOChan provides primitive device-independent operations on chan-nels. Furthermore, it de�nes values for general exceptions that may be raised when using any devicethrough a channel. Additional exceptions related to device-speci�c operations may be provided bythe appropriate device modules.The module IOLink allows the user to provide additional specialized device modules for use withchannels, corresponding to the pattern of the rest of the library.A Module SYSTEMDEFINITION MODULE SYSTEM;(* Gives access to system programming facilities that are probably non portable. *)(* The constants and types define underlying properties of storage *)CONSTBITSPERLOC = <implementation-defined constant> ;LOCSPERWORD = <implementation-defined constant> ;TYPELOC; (* A system basic type. Values are the uninterpreted contents of the smallestaddressable unit of storage *)ADDRESS = POINTER TO LOC;WORD = ARRAY [0 .. LOCSPERWORD-1] OF LOC;(* BYTE and LOCSPERBYTE are provided if appropriate for machine *)CONSTLOCSPERBYTE = <implementation-defined constant> ;TYPEBYTE = ARRAY [0 .. LOCSPERBYTE-1] OF LOC;PROCEDURE ADDADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;(* Returns address given by (addr + offset), or may raise an exception if thisaddress is not valid.*)PROCEDURE SUBADR (addr: ADDRESS; offset: CARDINAL): ADDRESS;(* Returns address given by (addr - offset), or may raise an exception if this addressis not valid.*)

PROCEDURE DIFADR (addr1, addr2: ADDRESS): INTEGER;(* Returns the difference between addresses (addr1 - addr2), or may raise an exceptionif the arguments are invalid or if the address space is non-contiguous.*)PROCEDURE MAKEADR (val: <some type>; ...): ADDRESS;(* Returns an address constructed from a list of values whose types areimplementation-defined, or may raise an exception if this address is not valid.*)PROCEDURE ADR (VAR v: <anytype>): ADDRESS;(* Returns the address of variable v. *)PROCEDURE ROTATE (val: <a packedset type>; num: INTEGER): <type of first parameter>;(* Returns a bit sequence obtained from val by rotating up or down (left or right) bythe absolute value of num. The direction is down if the sign of num is negative,otherwise the direction is up.*)PROCEDURE SHIFT (val: <a packedset type>; num: INTEGER): <type of first parameter>;(* Returns a bit sequence obtained from val by shifting up or down (left or right) bythe absolute value of num, introducing zeros as necessary. The direction is downif the sign of num is negative, otherwise the direction is up.*)PROCEDURE CAST (<targettype>; val: <anytype>): <targettype>;(* CAST is a type transfer function. Given the expression denoted by val, it returnsa value of the type <targettype>. An invalid value for the target value or aphysical address alignment problem may raise an exception.*)PROCEDURE TSIZE (<type>; ...): CARDINAL;(* Returns the number of LOCS used to store a value of the specified <type>. Theextra parameters, if present, are used to distinguish variants in a variant record.*)END SYSTEM.References[1] ISO/IEC 10646 Universal Multiple-Octet Coded Character Set(UCS). ISO/IEC JTC1/SC2,1993.[2] C. Pronk and M. Sch�onhacker. ISO/IEC 10514-1, the standard for Modula-2: Process Aspects.Sigplan Notices, this issue, 1996.[3] M. Woodman. A Taste of the Modula-2 Standard. ACM Sigplan Notices, 28(9), sept 1993.

