This "article" was written by and is copyright by Volition Systems.

 Please contact Jon Bondy, Box 148, Ardmore, PA, 19003, or 215-642-1057,
 or JBondy on TeleMail or Jon Bondy on MUSUS for more information.

 MODULA-2 -- A Language For The 80's

Modula-2 is a general purpose programming language designed by
Pascal's creator, Niklaus Wirth. Modula-2 combines simplicity and
power to provide an elegant alternative to assembly language,
Pascal, "C", and Ada. Language features include modules, processes,
separate compilation, dynamic array parameters, and low-level ma-
chine access. Modula-2 borrows extensively from Pascal, enabling
Pascal programmers to convert with minimal time and effort.

Modula-2's foremost attribute is simplicity. The compiler is
small enough to operate on 64K byte microcomputers, and the language
reference manual is only 48 pages long.

Modules
The module concept is of central importance to Modula-2; in fact,
it has given the language its name (MODUlar programming LAnguage).
A module is a collection of declarations (e.g., variables and
procedures). Objects declared within a module exist at the same
scope level as the module declaration, but the module restricts the
actual scope to objects which are explicitly "imported" to or
"exported" from the module.

Modules provide program structuring capabilities unachievable
with block-structured languages such as Pascal. Module uses include
encapsulation of machine-dependent portions of programs, declaration
of 'own' variables (i.e., local variables which maintain their
values across procedure calls), improved organization of large
programs, and more!

Separately Compiled Modules

Modula-2 supports separate compilation with the concept of
"definition" and "implementation" modules. Definition modules define
an interface (i.e., constant, type, variable and procedure decla-
rations) between the corresponding implementation module and
programs which access the module. The separation of definition from
implementation simplifies the development of large programs, espe-
cially when development involves a number of programmers: the inter-
face modules can be designed at the outset; once agreed upon, the
programmers can then proceed to write the implementation modules
assigned to them.

Modula-2 also provides a limited form of private types; i.e.,
where a type defined in a definition module is known by its ident-
ifier only, while the type's properties remain hidden in the imple-
mentation module. These "opaque" types permit the definition of
data types (such as files and semaphores) whose only operations are
procedures exported by the module.

Standard Library Modules

A well-known problem with Pascal is its restricted I/O facilities:
because only a limited form of file I/O is defined in the language,
the only means of defining alternate forms of I/O is to add non-
standard extensions to the language. More recently, a similar
problem has been voiced about Ada with respect to tasking: the high-
level tasking model built into the language precludes the definition
of alternate forms of tasking (e.g., different task scheduling
policies).

Modula-2 avoids these problems by excluding all I/O, process
scheduling, and storage allocation from the language definition;
instead, these facilities are provided by standard "library
modules" which are imported by most programs. The standard library
modules (also known as "low-level" modules) are an essential part of
every Modula-2 implementation, as their use ensures program
portability; however, since Modula-2 is sufficiently powerful to
express system operations, users can create their own low-level
modules when the need arises.

A beneficial side-effect of maintaining these facilities in
library modules is the lack of need for a sophisticated runtime
system. Because the language itself deals only with primitives,
code implementing higher-level abstractions such as process sche-
duling and file I/O need only be present when a program requires it.

Processes
Modula-2 provides the primitive concept of coroutines and co-
routine transfers as a building block for constructing concurrent
processes. Coroutines can be used to model the multiprocessing
facilities of any single-processor system.

Because coroutines are such a primitive form of concurrency, most
programs are expected to use higher-level tasking models. Modula-2
defines a standard library module implementing processes and
synchronization signals (via SEND and WAIT routines). Users may
define even more sophisticated tasking modules when the need arises;
for example, a subset of Ada tasking has been implemented as a
library module.

Low-level Machine Access

Modula-2 was designed as a language suitable for programming
entire computer systems, from I/O drivers to application programs;
hence, the language provides facilities for programming low-level
machine-dependent operations, including pointer and address arith-
metic, relaxed type checking, and access to peripheral device regis-
ters residing at fixed memory addresses. Modules obtain these facil-
ities by importing the standard module SYSTEM, which provides a
number of low-level data types and procedures. (Note that importing
SYSTEM marks a module as machine dependent.)

The type WORD is compatible with any data type representing an
object which is stored in one memory word. The type ADDRESS is
compatible with all pointer types, and may be used in arithmetic
operations. Type-checking can be subverted by using type identifiers
as type conversion functions; for example, INTEGER(TRUE) allows the
Boolean value TRUE to be treated as an integer quantity. The func-
tion ADR returns the memory address of a variable. Variables can
also be declared to reside at specific memory addresses.

Finally, for situations where the compiler cannot be induced to
generate the desired low-level operations, Modula-2 provides "code
procedures". Code procedures contain a sequence of machine instruc-
tions which the compiler substitutes inline for each call to the
code procedure.

Dynamic Array Parameters

Modula-2 allows formal array parameters to be declared without
index bound specifications; parameters of this type are compatible
with all arrays sharing the same element type. Dynamic array para-
meters allow general-purpose string and numerical operations to be
provided as library modules.

Procedure Variables

Modula-2 extends Pascal's concept of procedural parameters by
allowing procedure variables. Values assigned to procedure variables
are actual procedures; "calling" a procedure variable invokes the
procedure assigned to it. While procedure variables are not a well-
known concept in contemporary programming languages, they have a
number of uses beyond specifying functions to integration routines.

Syntax

A major problem encountered in switching to new programming
languages stems from the time and effort needed to overcome
ingrained habits. Modula-2 avoids this problem by borrowing
extensively from Pascal, both in terms of language features and in
syntax; Pascal programmers become proficient at coding simple
Modula-2 programs after a few hours of practice.

Modula-2 deviates from Pascal's syntax in one major respect: all
structured statements end with an explicit closing symbol. In
Pascal, only the REPEAT statement (with its closing symbol UNTIL)
follows this guideline. Modula-2 requires its WHILE, WITH, FOR, and
IF statements to be terminated with the symbol END; thus, they have
the forms REPEAT-UNTIL, IF-THEN-{ELSIF-THEN-}ELSE-END, WHILE-DO-END, WITH-DO-END, and FOR-DO-END. This change improves program readability by eliminating the ubiquitous BEGIN-END pairs from these places.

A small, but welcome change is the definition of the single
character symbols "&" and "#" as alternates for the commonly used
symbols "AND" and "<>".

Miscellany

Modula-2 contains a number of minor differences from Pascal which
will be welcomed by programmers familiar with Pascal's limitations.

Constant expressions may be used wherever constants are expected
(e.g., index bounds in an array declaration). Numeric constants can
be defined with hexadecimal, octal, and decimal values, and charac-
ter constants with ordinal values. Set constants may be associated
explicitly with specific types.

Pascal's restrictions on declaration order (i.e., CONST, TYPE,
VAR, PROCEDURE) have been relaxed to permit grouping of related
declarations.

In addition to the standard data types INTEGER, BOOLEAN, CHAR, and
REAL, Modula-2 provides the type CARDINAL for unsigned integer
operations.

FOR statements can specify arbitrary step values (e.g., FOR i := 1
TO 10 BY 2 DO). Pascal's GOTO statement has been replaced by better
flow-of-control constructs: the LOOP-EXIT statement simplifies the
coding of many situations, HALT terminates a program, and RETURN
terminates a procedure.

CASE statements (and record variants) accept subranges and con-
stant expressions in case label lists and ELSE parts at the end.
Record definitions may contain multiple variant parts.

Modula-2 explicitly defines left-to-right short-circuit evaluation
of logical expressions. This simplifies the coding of a number of
common programming situations and improves execution efficiency.

Function procedures may return any type of variable as a function
result. Function results are returned using the RETURN statment
with an expression specifying the result value.

Comments may be nested. Reserved words appear in capital letters
to distinguish them from identifiers.

Copyright (c) 1981 by Volition Systems. All rights reserved.
